Recent Comments

Sunday, March 15, 2009

2003

In November 2003, Ben and Adam Laurie from A.L. Digital Ltd. discovered that serious flaws in Bluetooth security may lead to disclosure of personal data.[26] It should be noted, however, that the reported security problems concerned some poor implementations of Bluetooth, rather than the protocol itself.

In a subsequent experiment, Martin Herfurt from the trifinite.group was able to do a field-trial at the CeBIT fairgrounds, showing the importance of the problem to the world. A new attack called BlueBug was used for this experiment.[27] This is one of a number of concerns that have been raised over the security of Bluetooth communications.

2004

In 2004 the first purported virus using Bluetooth to spread itself among mobile phones appeared on the Symbian OS.[28] The virus was first described by Kaspersky Lab and requires users to confirm the installation of unknown software before it can propagate. The virus was written as a proof-of-concept by a group of virus writers known as "29A" and sent to anti-virus groups. Thus, it should be regarded as a potential (but not real) security threat to Bluetooth or Symbian OS since the virus has never spread in the wild.

In August 2004, a world-record-setting experiment (see also Bluetooth sniping) showed that the range of Class 2 Bluetooth radios could be extended to 1.78 km (1.08 mile) with directional antennas and signal amplifiers.[29] This poses a potential security threat because it enables attackers to access vulnerable Bluetooth-devices from a distance beyond expectation. The attacker must also be able to receive information from the victim to set up a connection. No attack can be made against a Bluetooth device unless the attacker knows its Bluetooth address and which channels to transmit on.

2005

In January 2005, a mobile malware worm known as Lasco.A began targeting mobile phones using Symbian OS (Series 60 platform) using Bluetooth-enabled devices to replicate itself and spread to other devices. The worm is self-installing and begins once the mobile user approves the transfer of the file (velasco.sis ) from another device. Once installed, the worm begins looking for other Bluetooth-enabled devices to infect. Additionally, the worm infects other .SIS files on the device, allowing replication to another device through use of removable media (Secure Digital, Compact Flash, etc.). The worm can render the mobile device unstable.[30]

In April 2005, Cambridge University security researchers published results of their actual implementation of passive attacks against the PIN-based pairing between commercial Bluetooth devices, confirming the attacks to be practicably fast and the Bluetooth symmetric key establishment method to be vulnerable. To rectify this vulnerability, they carried out an implementation which showed that stronger, asymmetric key establishment is feasible for certain classes of devices, such as mobile phones.[31]

In June 2005, Yaniv Shaked and Avishai Wool published a paper describing both passive and active methods for obtaining the PIN for a Bluetooth link. The passive attack allows a suitably equipped attacker to eavesdrop on communications and spoof, if the attacker was present at the time of initial pairing. The active method makes use of a specially constructed message that must be inserted at a specific point in the protocol, to make the master and slave repeat the pairing process. After that, the first method can be used to crack the PIN. This attack's major weakness is that it requires the user of the devices under attack to re-enter the PIN during the attack when the device prompts them to. Also, this active attack probably requires custom hardware, since most commercially available Bluetooth devices are not capable of the timing necessary.[32]

In August 2005, police in Cambridgeshire, England, issued warnings about thieves using Bluetooth-enabled phones to track other devices left in cars. Police are advising users to ensure that any mobile networking connections are de-activated if laptops and other devices are left in this way.[33]

2006

In April 2006, researchers from Secure Network and F-Secure published a report that warns of the large number of devices left in a visible state, and issued statistics on the spread of various Bluetooth services and the ease of spread of an eventual Bluetooth worm.

2007

In October 2007, at the Luxemburgish Hack.lu Security Conference, Kevin Finistere and Thierry Zoller demonstrated and released a remote root shell via Bluetooth on Mac OS X v10.3.9 and v10.4. They also demonstrated the first Bluetooth PIN and Linkkeys cracker, which is based on the research of Wool and Shaked.

Health concerns

Main article: Wireless electronic devices and health

Bluetooth uses the microwave radio frequency spectrum in the 2.4 GHz to 2.4835 GHz range. Maximum power output from a Bluetooth radio is 100 mW, 2.5 mW, and 1 mW for Class 1, Class 2, and Class 3 devices respectively, which puts Class 1 at roughly the same level as mobile phones, and the other two classes much lower.[35] Accordingly, Class 2 and Class 3 Bluetooth devices are considered less of a potential hazard than mobile phones, and Class 1 may be comparable to that of mobile phones

Code division multiple access (CDMA)

Code division multiple access (CDMA) is a channel access method utilized by various radio communication technologies. It should not be confused with the mobile phone standards called cdmaOne and CDMA2000 (which are often referred to as simply "CDMA"), this uses CDMA as an underlying channel access method.

One of the basic concepts in data communication is the idea of allowing several transmitters to send information simultaneously over a single communication channel. This allows several users to share a bandwidth of frequencies. This concept is called multiplexing. CDMA employs spread-spectrum technology and a special coding scheme (where each transmitter is assigned a code) to allow multiple users to be multiplexed over the same physical channel. By contrast, time division multiple access (TDMA) divides access by time, while frequency-division multiple access (FDMA) divides it by frequency. CDMA is a form of "spread-spectrum" signaling, since the modulated coded signal has a much higher data bandwidth than the data being communicated.

An analogy to the problem of multiple access is a room (channel) in which people wish to communicate with each other. To avoid confusion, people could take turns speaking (time division), speak at different pitches (frequency division), or speak in different languages (code division). CDMA is analogous to the last example where people speaking the same language can understand each other, but not other people. Similarly, in radio CDMA, each group of users is given a shared code. Many codes occupy the same channel, but only users associated with a particular code can understand each other.

Uses

* One of the early applications for code division multiplexing—predating, and distinct from cdmaOne—is in GPS.

* The Qualcomm standard IS-95, marketed as cdmaOne.

* The Qualcomm standard IS-2000, known as CDMA2000. This standard is used by several mobile phone companies, including the Globalstar satellite phone network.

* CDMA has been used in the OmniTRACS satellite system for transportation logistics.

Steps in CDMA Modulation

CDMA is a spread spectrum multiple access[1] technique. A spread spectrum technique is one which spreads the bandwidth of the data uniformly for the same transmitted power. Spreading code is a pseudo-random code which has a narrow Ambiguity function unlike other narrow pulse codes. In CDMA a locally generated code runs at a much higher rate than the data to be transmitted. Data for transmission is simply logically XOR (exclusive OR) added with the faster code. The figure shows how spread spectrum signal is generated. The data signal with pulse duration of Tb is XOR added with the code signal with pulse duration of Tc. (Note: bandwidth is proportional to 1 / T where T = bit time) Therefore, the bandwidth of the data signal is 1 / Tb and the bandwidth of the spread spectrum signal is 1 / Tc. Since Tc is much smaller than Tb, the bandwidth of the spread spectrum signal is much larger than the bandwidth of the original signal. The ratio Tb / Tc is called spreading factor or processing gain and determines to certain extent the upper limit of total number of users supported simultaneously by a base station[2]Generation of a CDMA signalEach user in a CDMA system uses a different code to modulate their signal. Choosing the codes used to modulate the signal is very important in the performance of CDMA systems. The best performance will occur when there is good separation between the signal of a desired user and the signals of other users. The separation of the signals is made by correlating the received signal with the locally generated code of the desired user. If the signal matches the desired user's code then the correlation function will be high and the system can extract that signal. If the desired user's code has nothing in common with the signal the correlation should be as close to zero as possible (thus eliminating the signal); this is referred to as cross correlation. If the code is correlated with the signal at any time offset other than zero, the correlation should be as close to zero as possible. This is referred to as auto-correlation and is used to reject multi-path interference. [3]

In general, CDMA belongs to two basic categories: synchronous (orthogonal codes) and asynchronous (pseudorandom codes).

Code Division Multiplexing (Synchronous CDMA)

Synchronous CDMA exploits mathematical properties of orthogonality between vectors representing the data strings. For example, binary string "1011" is represented by the vector (1, 0, 1, 1). Vectors can be multiplied by taking their dot product, by summing the products of their respective components. If the dot product is zero, the two vectors are said to be orthogonal to each other. (Note: If u=(a,b) and v=(c,d), the dot product u.v = a*c + b*d) Some properties of the dot product help to understand how W-CDMA works. If vectors a and b are orthogonal, then
\mathbf{a}\cdot(\mathbf{a}+\mathbf{b})=||\mathbf{a}||^2\quad\mathrm{since}\quad\mathbf{a}\cdot\mathbf{a}+\mathbf{a}\cdot\mathbf{b}= ||a||^2+0,
\mathbf{a}\cdot(-\mathbf{a}+\mathbf{b})=-||\mathbf{a}||^2\quad\mathrm{since}\quad-\mathbf{a}\cdot\mathbf{a}+\mathbf{a}\cdot\mathbf{b}= -||a||^2+0,
\mathbf{b}\cdot(\mathbf{a}+\mathbf{b})=||\mathbf{b}||^2\quad\mathrm{since}\quad\mathbf{b}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b}= 0+||b||^2,
\mathbf{b}\cdot(\mathbf{a}-\mathbf{b})=-||\mathbf{b}||^2\quad\mathrm{since}\quad\mathbf{b}\cdot\mathbf{a}-\mathbf{b}\cdot\mathbf{b}=0 -||b||^2.

Each user in synchronous CDMA uses an orthogonal codes to modulate their signal. An example of four mutually orthogonal digital signals is shown in the figure. Orthogonal codes have a cross-correlation equal to zero; in other words, they do not interfere with each other. In the case of IS-95 64 bit Walsh codes are used to encode the signal to separate different users. Since each of the 64 Walsh codes are orthogonal to one another, the signals are channelized into 64 orthogonal signals. The following example demonstrates how each users signal can be encoded and decoded.

Example


Start with a set of vectors that are mutually orthogonal. (Although mutual orthogonality is the only condition, these vectors are usually constructed for ease of decoding, for example columns or rows from Walsh matrices.) An example of orthogonal functions is shown in the picture on the left. These vectors will be assigned to individual users and are called the "code", "chipping code" or "chip code". In the interest of brevity, the rest of this example uses codes (v) with only 2 digits.
An example of four mutually orthogonal digital signals.

Each user is associated with a different code, say v. If the data to be transmitted is a digital zero, then the actual bits transmitted will be –v, and if the data to be transmitted is a digital one, then the actual bits transmitted will be v. For example, if v=(1,–1), and the data that the user wishes to transmit is (1, 0, 1, 1) this would correspond to (v, –v, v, v) which is then constructed in binary as ((1,–1),(–1,1),(1,–1),(1,–1)). For the purposes of this article, we call this constructed vector the transmitted vector.

Each sender has a different, unique vector v chosen from that set, but the construction method of the transmitted vector is identical.

Now, due to physical properties of interference, if two signals at a point are in phase, they add to give twice the amplitude of each signal, but if they are out of phase, they "subtract" and give a signal that is the difference of the amplitudes. Digitally, this behaviour can be modelled by the addition of the transmission vectors, component by component.

If sender0 has code (1,–1) and data (1,0,1,1), and sender1 has code (1,1) and data (0,0,1,1), and both senders transmit simultaneously, then this table describes the coding steps:
Encode sender0
Because signal0 and signal1 are transmitted at the same time into the air, they add to produce the raw signal:
(1,–1,–1,1,1,–1,1,–1) + (–1,–1,–1,–1,1,1,1,1) = (0,–2,–2,0,2,0,2,0)

This raw signal is called an interference pattern. The receiver then extracts an intelligible signal for any known sender by combining the sender's code with the interference pattern, the receiver combines it with the codes of the senders. The following table explains how this works and shows that the signals do not interfer with one another:
decode1=pattern.vector1
When the receiver attempts to decode the signal using sender1’s code, the data is all zeros, therefore the cross correlation is equal to zero and it is clear that sender1 did not transmit any data.

Asynchronous CDMA

ee also: Direct-sequence spread spectrum

The previous example of orthogonal Walsh sequences describes how 2 users can be multiplexed together in a synchronous system, a technique that is commonly referred to as Code Division Multiplexing (CDM). The set of 4 Walsh sequences shown in the figure will afford up to 4 users, and in general, an NxN Walsh matrix can be used to multiplex N users. Multiplexing requires all of the users to be coordinated so that each transmits their assigned sequence v (or the complement, -v) starting at exactly the same time. Thus, this technique finds use in base-to-mobile links, where all of the transmissions originate from the same transmitter and can be perfectly coordinated.

On the other hand, the mobile-to-base links cannot be precisely coordinated, particularly due to the mobility of the handsets, and require a somewhat different approach. Since it is not mathematically possible to create signature sequences that are orthogonal for arbitrarily random starting points, unique "pseudo-random" or "pseudo-noise" (PN) sequences are used in Asynchronous CDMA systems. A PN code is a binary sequence that appears random but can be reproduced in a deterministic manner by intended receivers. These PN codes are used to encode and decode a users signal in Asynchronous CDMA in the same manner as the orthogonal codes in synchrous CDMA (shown in the example above). These PN sequences are statistically uncorrelated, and the sum of a large number of PN sequences results in Multiple Access Interference (MAI) that is approximated by a Gaussian noise process (following the "central limit theorem" in statistics). If all of the users are received with the same power level, then the variance (e.g., the noise power) of the MAI increases in direct proportion to the number of users. In other words, unlike synchronous CDMA, the signals of other users will appear as noise to the signal of interest and interfere slightly with the desired signal in proportion to number of users.

All forms of CDMA use spread spectrum process gain to allow receivers to partially discriminate against unwanted signals. Signals encoded with the specified PN sequence (code) are received, while signals with different codes (or the same code but a different timing offset) appear as wideband noise reduced by the process gain.

Since each user generates MAI, controlling the signal strength is an important issue with CDMA transmitters. A CDM (Synchronous CDMA), TDMA or FDMA receiver can in theory completely reject arbitrarily strong signals using different codes, time slots or frequency channels due to the orthogonality of these systems. This is not true for Asynchronous CDMA; rejection of unwanted signals is only partial. If any or all of the unwanted signals are much stronger than the desired signal, they will overwhelm it. This leads to a general requirement in any Asynchronous CDMA system to approximately match the various signal power levels as seen at the receiver. In CDMA cellular, the base station uses a fast closed-loop power control scheme to tightly control each mobile's transmit power. See Near-far problem for further information on this problem.

Advantages of Asynchronous CDMA over other techniques

1. Efficient Practical utilization of Fixed Frequency Spectrum

Asynchronous CDMA's main advantage over CDM (Synchronous CDMA), TDMA and FDMA is that it can use the spectrum more efficiently in mobile telephony applications. (In theory, CDMA, TDMA and FDMA have exactly the same spectral efficiency but practically, each has its own challenges - power control in the case of CDMA, timing in the case of TDMA, and frequency generation/filtering in the case of FDMA.) TDMA systems must carefully synchronize the transmission times of all the users to ensure that they are received in the correct timeslot and do not cause interference. Since this cannot be perfectly controlled in a mobile environment, each timeslot must have a guard-time, which reduces the probability that users will interfere, but decreases the spectral efficiency. Similarly, FDMA systems must use a guard-band between adjacent channels, due to the random doppler shift of the signal spectrum which occurs due to the user's mobility. The guard-bands will reduce the probability that adjacent channels will interfere, but decrease the utilization of the spectrum.

2. Flexible Allocation of Resources

Asynchronous CDMA offers a key advantage in the flexible allocation of resources i.e. allocation of a PN codes to active users. In the case of CDM, TDMA and FDMA the number of simultaneous orthogonal codes, time slots and frequency slots respectively is fixed hence the capacity interms of number of simultaneous users is limited. There are a fixed number of orthogonal codes, timeslots or frequency bands that can be allocated for CDM, TDMA and FDMA systems, which remain underutilized due to the bursty nature of telephony and packetized data transmissions. There is no strict limit to the number of users that can be supported in an Asynchronous CDMA system, only a practical limit governed by the desired bit error probability, since the SIR (Signal to Interference Ratio) varies inversely with the number of users. In a bursty traffic environment like mobile telephony, the advantage afforded by Asynchronous CDMA is that the performance (bit error rate) is allowed to fluctuate randomly, with an average value determined by the number of users times the percentage of utilization. Suppose there are 2N users that only talk half of the time, then 2N users can be accommodated with the same average bit error probability as N users that talk all of the time. The key difference here is that the bit error probability for N users talking all of the time is constant, whereas it is a random quantity (with the same mean) for 2N users talking half of the time.

In other words, Asynchronous CDMA is ideally suited to a mobile network where large numbers of transmitters each generate a relatively small amount of traffic at irregular intervals. CDM (Synchronous CDMA), TDMA and FDMA systems cannot recover the underutilized resources inherent to bursty traffic due to the fixed number of orthogonal codes, time slots or frequency channels that can be assigned to individual transmitters. For instance, if there are N time slots in a TDMA system and 2N users that talk half of the time, then half of the time there will be more than N users needing to use more than N timeslots. Furthermore, it would require significant overhead to continually allocate and deallocate the orthogonal code, time-slot or frequency channel resources. By comparison, Asynchronous CDMA transmitters simply send when they have something to say, and go off the air when they don't, keeping the same PN signature sequence as long as they are connected to the system.

3. Privacy protection in Spread Spectrum CDMA due to anti-jamming capabilities of PN sequences

Spread Spectrum Characteristics of CDMA

Most modulation schemes try to minimize the bandwidth of this signal since bandwidth is a limited resource. However, spread spectrum techniques use a transmission bandwidth that is several orders of magnitude greater than the minimum required signal bandwidth. One of the initial reasons for doing this was military applications including guidance and communication systems. These systems were designed using spread spectrum because of its security and resistance to jamming. Asynchronous CDMA has some level of privacy built in because the signal is spread using a pseudorandom code; this code makes the spread spectrum signals appear random or have noise-like properties. A receiver cannot demodulate this transmission without knowledge of the pseudorandom sequence used to encode the data. CDMA is also resistant to jamming. A jamming signal only has a finite amount of power available to jam the signal. The jammer can either spread its energy over the entire bandwidth of the signal or jam only part of the entire signal. [4]

CDMA can also effectively reject narrowband interference. Since narrowband interference affects only a small portion of the spread spectrum signal, it can easily be removed through notch filtering without much loss of information. Convolution encoding and interleaving can be used to assist in recovering this lost data. CDMA signals are also resistant to multipath fading. Since the spread spectrum signal occupies a large bandwidth only a small portion of this will undergo fading due to multipath at any given time. Like the narrowband interference this will result in only a small loss of data and can be overcome.

Another reason CDMA is resistant to multipath interference is because the delayed versions of the transmitted pseudorandom codes will have poor correlation with the original pseudorandom code, and will thus appear as another user, which is ignored at the receiver. In other words, as long as the multipath channel induces at least one chip of delay, the multipath signals will arrive at the receiver such that they are shifted in time by at least one chip from the intended signal. The correlation properties of the pseudorandom codes are such that this slight delay causes the multipath to appear uncorrelated with the intended signal, and it is thus ignored.

Some CDMA devices use a rake receiver, which exploits multipath delay components to improve the performance of the system. A rake receiver combines the information from several correlators, each one tuned to a different path delay, producing a stronger version of the signal than a simple receiver with a single correlator tuned to the path delay of the strongest signal. [5]

Frequency reuse is the ability to reuse the same radio channel frequency at other cell sites within a cellular system. In the FDMA and TDMA systems frequency planning is an important consideration. The frequencies used in different cells need to be planned carefully in order to ensure that the signals from different cells do not interfere with each other. In a CDMA system the same frequency can be used in every cell because channelization is done using the pseudorandom codes. Reusing the same frequency in every cell eliminates the need for frequency planning in a CDMA system; however, planning of the different pseudorandom sequences must be done to ensure that the received signal from one cell does not correlate with the signal from a nearby cell. [6]

Since adjacent cells use the same frequencies, CDMA systems have the ability to perform soft handoffs. Soft handoffs allow the mobile telephone to communicate simultaneously with two or more cells. The best signal quality is selected until the handoff is complete. This is different from hard handoffs utilized in other cellular systems. In a hard handoff situation, as the mobile telephone approaches a handoff, signal strength may vary abruptly. In contrast, CDMA systems use the soft handoff, which is undetectable and provides a more reliable and higher quality signal.

GPRS Core Network


he General Packet Radio Service (GPRS) system is used by GSM mobile phones, the most common mobile phone system in the world (as of 2004[update]), for transmitting IP packets. The GPRS core network is the centralized part of the GPRS system. It also provides support for WCDMA based 3G networks. The GPRS core network is an integrated part of the GSM network switching subsystem.General support functions
GPRS core structure

The GPRS core network provides mobility management, session management and transport for Internet Protocol packet services in GSM and WCDMA networks. The core network also provides support for other additional functions such as billing and lawful interception. It was also proposed, at one stage, to support packet radio services in the US D-AMPS TDMA system, however, in practice, most of these networks are being converted to GSM so this option is becoming largely irrelevant.

Like GSM in general, GPRS is an open standards driven system. The standardization body is the 3GPP.

[edit] GPRS tunnelling protocol (GTP)
Main article: GPRS tunnelling protocol

GPRS tunnelling protocol is the defining IP protocol of the GPRS core network. Primarily it is the protocol which allows end users of a GSM or WCDMA network to move from place to place while continuing to connect to the Internet as if from one location at the Gateway GPRS Support Node (GGSN). It does this by carrying the subscriber's data from the subscriber's current Serving GPRS Support Node (SGSN) to the GGSN which is handling the subscriber's session. Three forms of GTP are used by the GPRS core network.

GTP-U
for transfer of user data in separated tunnels for each PDP context
GTP-C
for control reasons including:

* setup and deletion of PDP contexts
* verification of GSN reachability
* updates; e.g., as subscribers move from one SGSN to another.

GTP'
for transfer of charging data from GSNs to the charging function.

GGSNs and SGSNs (collectively known as GSNs) listen for GTP-C messages on UDP port 2123 and for GTP-U messages on port 2152. This communication happens within a single network or may, in the case of international roaming, happen internationally, probably across a GPRS roaming exchange (GRX).

The Charging Gateway Function (CGF) listens to GTP' messages sent from the GSNs on TCP or UDP port 3386. The core network sends charging information to the CGF, typically including PDP context activation times and the quantity of data which the end user has transferred. However, this communication which occurs within one network is less standardized and may, depending on the vendor and configuration options, use proprietary encoding or even an entirely proprietary system.

[edit] GPRS support nodes (GSN)

A GSN is a network node which supports the use of GPRS in the GSM core network. All GSNs should have a Gn interface and support the GPRS tunnelling protocol. There are two key variants of the GSN, namely Gateway and Serving GPRS Support Node.

Gateway GPRS Support Node (GGSN)

The Gateway GPRS Support Node (GGSN) is a main component of the GPRS network. The GGSN is responsible for the interworking between the GPRS network and external packet switched networks, like the Internet and X.25 networks.

From an external network's point of view, the GGSN is a router to a sub-network, because the GGSN ‘hides’ the GPRS infrastructure from the external network. When the GGSN receives data addressed to a specific user, it checks if the user is active. If it is, the GGSN forwards the data to the SGSN serving the mobile user, but if the mobile user is inactive, the data are discarded. On the other hand, mobile-originated packets are routed to the right network by the GGSN.

The GGSN is the anchor point that enables the mobility of the user terminal in the GPRS/UMTS networks. In essence, it carries out the role in GPRS equivalent to the Home Agent in Mobile IP. It maintains routing necessary to tunnel the Protocol Data Units (PDUs) to the SGSN that service a particular MS (Mobile Station).

The GGSN converts the GPRS packets coming from the SGSN into the appropriate packet data protocol (PDP) format (e.g., IP or X.25) and sends them out on the corresponding packet data network. In the other direction, PDP addresses of incoming data packets are converted to the GSM address of the destination user. The readdressed packets are sent to the responsible SGSN. For this purpose, the GGSN stores the current SGSN address of the user and his or her profile in its location register. The GGSN is responsible for IP address assignment and is the default router for the connected user equipment (UE). The GGSN also performs authentication and charging functions.

Other function include subscriber screening, IP Pool management and address mapping, QoS and PDP context enforcement.

With LTE scenario the GGSN functionality moves to SAE gateway (with SGSN functionality working in MME).

Serving GPRS Support Node (SGSN)

A Serving GPRS Support Node (SGSN) is responsible for the delivery of data packets from and to the mobile stations within its geographical service area. Its tasks include packet routing and transfer, mobility management (attach/detach and location management), logical link management, and authentication and charging functions. The location register of the SGSN stores location information (e.g., current cell, current VLR) and user profiles (e.g., IMSI, address(es) used in the packet data network) of all GPRS users registered with this SGSN.

Common SGSN Functions

* Detunnel GTP packets from the GGSN (downlink)
* Tunnel IP packets toward the GGSN (uplink)
* Carry out mobility management as Standby mode mobile moves from Routing Area to Routing Area
* Billing user data

GSM/EDGE specific SGSN functions

Enhanced Data Rates for GSM Evolution (EDGE) specific SGSN functions and characteristics are:

* Maximum data rate of approx. 60 kbit/s (150 kbit/s for EDGE) per subscriber
* Connect via frame relay or IP to the Packet Control Unit using the Gb protocol stack
* Accept uplink data to form IP packets
* Encrypt down-link data, decrypt up-link data
* Carry out mobility management to the level of a cell for connected mode mobiles

WCDMA specific SGSN functions

* Carry up to about 300 kbit/s traffic per subscriber (R99)
* Carry up to about 7.2 Mbit/s traffic downlink and 2.0 Mbit/s traffic uplink (HSPA)
* Tunnel/detunnel downlink/uplink packets toward the radio network controller (RNC)
* Carry out mobility management to the level of an RNC for connected mode mobiles

These differences in functionality have led some manufacturers to create specialist SGSNs for each of WCDMA and GSM which do not support the other networks, whilst other manufacturers have succeeded in creating both together, but with a performance cost due to the compromises required.

[edit] Access point
Main article: Access point name

An access point is:

* An IP network to which a mobile can be connected
* A set of settings which are used for that connection
* A particular option in a set of settings in a mobile phone

When a GPRS mobile phone sets up a PDP context, the access point is selected. At this point an access point name (APN) is determined

Example: aricent.mnc012.mcc345.gprs
Example: Internet
Example: mywap

This access point is then used in a DNS query to a private DNS network. This process (called APN resolution) finally gives the IP address of the GGSN which should serve the access point. At this point a PDP context can be activated.

PDP Context

The packet data protocol (PDP; e.g., IP, X.25, FrameRelay) context is a data structure present on both the SGSN and the GGSN which contains the subscriber's session information when the subscriber has an active session. When a mobile wants to use GPRS, it must first attach and then activate a PDP context. This allocates a PDP context data structure in the SGSN that the subscriber is currently visiting and the GGSN serving the subscribers access point. The data recorded includes

* Subscriber's IP address
* Subscriber's IMSI
* Subscriber's
o Tunnel Endpoint ID (TEID) at the GGSN
o Tunnel Endpoint ID (TEID) at the SGSN

The Tunnel Endpoint ID (TEID) is a number allocated by the GSN which identifies the tunnelled data related to a particular PDP context.

There are two kinds of PDP contexts.

* Primary PDP context
o Has a unique IP address associated with it
* Secondary PDP context
o Shares an IP address with another PDP context
o Is created based on an existing PDP context (to share the IP address)
o Secondary PDP contexts may have different quality of service settings

A total of 11 PDP contexts (with any combination of primary and secondary) can co-exist. NSAPI are used to differentiate the different PDP context.

Reference Points and Interfaces

Within the GPRS core network standards there are a number of interfaces and reference points (logical points of connection which probably share a common physical connection with other reference points). Some of these names can be seen in the network structure diagram on this page.

Interfaces in the GPRS network

Gb
Interface between the base station subsystem and the SGSN the transmission protocol could be Frame Relay or IP.
Gn
IP Based interface between SGSN and other SGSNs and (internal) GGSNs. DNS also shares this interface. Uses the GTP Protocol.
Gp
IP Based interface between internal SGSN and external GGSNs. Between the SGSN and the external GGSN, there is the border gateway (which is essentially a firewall). Also uses the GTP Protocol.
Ga
The interface servers the CDRs (accounting records) which are written in the GSN and sent to the charging gateway (CG). This interface uses a GTP-based protocol, with modifications that supports CDRs (Called GTP' or GTP prime).
Gr
Interface between the SGSN and the HLR. Messages going through this interface uses the MAP3 protocol.
Gd
Interface between the SGSN and the SMS Gateway. Can use MAP1, MAP2 or MAP3.
Gs
Interface between the SGSN and the MSC (VLR). Uses the BSSAP+ protocol. This interface allows paging and station availability when it performs data transfer. When the station is attached to the GPRS network, the SGSN keeps track of which routing area (RA) the station is attached to. An RA is a part of a larger location area (LA). When a station is paged this information is used to conserve network resources. When the station performs a PDP context, the SGSN has the exact BTS the station is using.
Gi
The interface between the GGSN and a public data network (PDN) either directly to the Internet or through a WAP gateway. Uses the IP protocol.
Ge
The interface between the SGSN and the service control point (SCP); uses the CAP protocol.
Gx
The on-line policy interface between the GGSN and the charging rules function (CRF). It is used for provisioning service data flow based charging rules. Uses the diameter protocol.
Gy
The on-line charging interface between the GGSN and the online charging system (OCS). Uses the diameter protocol (DCCA application).
Gz
The off-line (CDR-based) charging interface between the GSN and the CG. Uses GTP'.
Gmb

General packet radio service (GPRS)


General packet radio service (GPRS) is a packet oriented mobile data service available to users of the 2G cellular communication systems global system for mobile communications (GSM), as well as in the 3G systems. In the 2G systems, GPRS provides data rates of 56-114 kbit/s.

GPRS data transfer is typically charged per megabyte of traffic transferred, while data communication via traditional circuit switching is billed per minute of connection time, independent of whether the user actually is using the capacity or is in an idle state. GPRS is a best-effort packet switched service, as opposed to circuit switching, where a certain quality of service (QoS) is guaranteed during the connection for non-mobile users.

2G cellular systems combined with GPRS are often described as 2.5G, that is, a technology between the second (2G) and third (3G) generations of mobile telephony. It provides moderate speed data transfer, by using unused time division multiple access (TDMA) channels in, for example, the GSM system. Originally there was some thought to extend GPRS to cover other standards, but instead those networks are being converted to use the GSM standard, so that GSM is the only kind of network where GPRS is in use. GPRS is integrated into GSM Release 97 and newer releases. It was originally standardized by European Telecommunications Standards Institute (ETSI), but now by the 3rd Generation Partnership Project (3GPP).

GPRS was developed as a GSM response to the earlier CDPD and i-mode packet switched cellular technologies.Services

GPRS upgrades GSM data services providing:

* Multimedia messaging service (MMS)
* Short message service (SMS)
* Push to talk over cellular (PoC/PTT)
* Instant messaging and presence—wireless village
* Internet applications for smart devices through wireless application protocol (WAP)
* Point-to-point (PTP) service: inter-networking with the Internet (IP)
* Future enhancements: flexibility to add new functions, such as more capacity, more users, new accesses, new protocols, new radio networks.

If SMS over GPRS is used, an SMS transmission speed of about 30 SMS messages per minute may be achieved. This is much faster than using the ordinary SMS over GSM, whose SMS transmission speed is about 6 to 10 SMS messages per minute

[edit] Protocols supported

GPRS originally supported (in theory) internet protocol (IP), point-to-point protocol (PPP) and X.25 connections. The last has been typically used for applications like wireless payment terminals, although it has been removed from the standard. X.25 can still be supported over PPP, or even over IP, but doing this requires either a router to perform encapsulation or intelligence built in to the end-device/terminal; e.g., user equipment (UE). In practice, the mobile built-in browser uses IPv4. In this mode PPP is often not supported by the mobile phone operator, while IPv6 is not yet popular. But if the mobile is used as a modem to the connected computer, PPP is used to tunnel IP to the phone. This allows an IP address to be assigned dynamically to the mobile equipment.

When TCP/IP is used, each phone can have one or more IP addresses allocated. GPRS will store and forward the IP packets to the phone during cell handover (when you move from one cell to another). A radio noise induced pause can be interpreted by TCP as packet loss, and cause a temporary throttling in transmission speed.

[edit] Hardware

Class A
Can be connected to GPRS service and GSM service (voice, SMS), using both at the same time. Such devices are known to be available today.
Class B
Can be connected to GPRS service and GSM service (voice, SMS), but using only one or the other at a given time. During GSM service (voice call or SMS), GPRS service is suspended, and then resumed automatically after the GSM service (voice call or SMS) has concluded. Most GPRS mobile devices are Class B.
Class C
Are connected to either GPRS service or GSM service (voice, SMS). Must be switched manually between one or the other service.

A true Class A device may be required to transmit on two different frequencies at the same time, and thus will need two radios. To get around this expensive requirement, a GPRS mobile may implement the dual transfer mode (DTM) feature. A DTM-capable mobile may use simultaneous voice and packet data, with the network coordinating to ensure that it is not required to transmit on two different frequencies at the same time. Such mobiles are considered pseudo-Class A, sometimes referred to as "simple class A". Some networks are expected to support DTM in 2007.

GPRS is technology in which speed is a direct function of the number of TDMA time slots assigned, which is the lesser of (a) what the particular cell supports and (b) the maximum capability of the mobile device expressed as a GPRS multislot class.
Huawei E220 Modem

USB GPRS modems use a terminal-like interface USB 2.0 and later, data formats V.42bis, and RFC 1144 and external antennas. Modems can be added as cards (for laptops) or external USB devices which are similar in shape and size to a computer mouse.

[edit] Coding schemes

Coding
scheme Speed
(kbit/s)
CS-1 8.0
CS-2 12.0
CS-3 14.4
CS-4 20.0

Transfer speed depends also on the channel encoding used. The least robust, but fastest, coding scheme (CS-4) is available near a base transceiver station (BTS), while the most robust coding scheme (CS-1) is used when the mobile station (MS) is further away from a BTS.

Using the CS-4 it is possible to achieve a user speed of 20.0 kbit/s per time slot. However, using this scheme the cell coverage is 25% of normal. CS-1 can achieve a user speed of only 8.0 kbit/s per time slot, but has 98% of normal coverage. Newer network equipment can adapt the transfer speed automatically depending on the mobile location.

Like circuit-switched data (CSD), high-speed circuit-switched data (HSCSD) establishes a circuit and is usually billed per minute. For an application such as downloading, HSCSD may be preferred, since circuit-switched data are usually given priority over packet-switched data on a mobile network, and there are relatively few seconds when no data are being transferred.

Technology Download (kbit/s) Upload (kbit/s) Configuration
CSD 9.6 9.6 1+1
HSCSD 28.8 14.4 2+1
HSCSD 43.2 14.4 3+1
GPRS 80.0 20.0 (Class 8 & 10 and CS-4) 4+1
GPRS 60.0 40.0 (Class 10 and CS-4) 3+2
EGPRS (EDGE) 236.8 59.2 (Class 8, 10 and MCS-9) 4+1
EGPRS (EDGE) 177.6 118.4 (Class 10 and MCS-9) 3+2

[edit] Multiple access schemes

The multiple access methods used in GSM with GPRS are based on frequency division duplex (FDD) and TDMA. During a session, a user is assigned to one pair of up-link and down-link frequency channels. This is combined with time domain statistical multiplexing; i.e., packet mode communication, which makes it possible for several users to share the same frequency channel. The packets have constant length, corresponding to a GSM time slot. The down-link uses first-come first-served packet scheduling, while the up-link uses a scheme very similar to reservation ALOHA (R-ALOHA). This means that slotted ALOHA (S-ALOHA) is used for reservation inquiries during a contention phase, and then the actual data is transferred using dynamic TDMA with first-come first-served scheduling.

[edit] Mobility management
See also: mobility management, handover, roaming, and connection establishment
This section requires expansion.

[edit] Network topology
See also: GPRS core network and gateway GPRS support node
This section requires expansion.

[edit] Addressing

A GPRS connection is established by reference to its access point name (APN). The APN defines the services such as wireless application protocol (WAP) access, short message service (SMS), multimedia messaging service (MMS), and for Internet communication services such as email and World Wide Web access.
This section requires expansion.

[edit] Availability

In many areas, such as France, telephone operators have priced GPRS relatively cheaply (compared to older GSM data transfer, CSD and HSCSD). Some mobile phone operators offer flat rate access to the Internet, while others charge based on data transferred, usually rounded up to 100 kilobytes.

During the heyday of GPRS in the developed countries, around 2005, typical prices varied from EUR €0,24 per megabyte to over €20 per megabyte. In developing countries, prices vary widely, and change. Some operators gave free access while they decided pricing, for example in Togocel.tg in Togo, West Africa, others were over-priced, such as Tigo of Ghana at one US dollar per megabyte or Indonesia at $3 per megabyte. AirTel of India charges $0.025 per megabyte, and Telstra of Australia charges $0.022[1]. As of 2008, data access in Canada is still prohibitively expensive. For example, Fido charges $0.05 per kilobyte, or roughly $50 per megabyte.[2]. In Venezuela, Digitel charges about $20 per 100 Mb or $25 for unlimited access.

Pre-paid SIM Cards allow travelers to buy short term internet access. The mean price in developing nations is US$1 per hour.[citation needed]

The maximum speed of a GPRS connection offered in 2003 was similar to a modem connection in an analog wire telephone network, about 32-40 kbit/s, depending on the phone used. Latency is very high; round-trip time (RTT) is typically about 600-700 ms and often reaches 1 s. GPRS is typically prioritized lower than speech, and thus the quality of connection varies greatly.

In order to set up a GPRS connection for a wireless modem, a user must specify an APN, optionally a user name and password, and very rarely an IP address, all provided by the network operator.

Devices with latency/RTT improvements (via, for example, the extended UL TBF mode feature) are generally available. Also, network upgrades of features are available with certain operators. With these enhancements the active round-trip time can be reduced, resulting in significant increase in application-level throughput speeds.

Monday, March 9, 2009

Gearing Up for the Big Switch

By LISA NAPOLI
Published: Thursday, November 13, 2003

* Sign In to E-Mail
* Print
* Single-Page
*
Reprints
* ShareClose
o Linkedin
o Digg
o Facebook
o Mixx
o My Space
o Yahoo! Buzz
o Permalink
o

Article Tools Sponsored By

GUY RADER lives in Queens, but when it comes to cellphone service, he feels as if he has been ''in pre-glasnost Russia.''

That is because he has not been able to switch wireless companies without giving up his number, which he has had for four years. But in 11 days, new federal rules will let him move his number from Sprint to a new provider, so he says he intends to start ''playing the field,'' studying offers from rival companies he has previously ignored lest he suffer from amenity envy.

''I'd love to have a different selection of phones,'' said Mr. Rader, 29, a freelance video editor. ''I'd love to have rollover minutes. It's not so much that I hate Sprint. I hate being locked to it.''

Mr. Rader and many of the nation's 148 million other wireless customers will no longer be locked in after Nov. 24, yet the question is whether freedom can be achieved without chaos. Moving a phone number to a new provider may sound simple, but it is anything but.

Wireless companies and industry analysts question whether the carriers will be able to accommodate those who choose to make the switch. Studies predict more customer turnover in an industry already rife with it. Some 39 million people changed carriers last year, even without being able to take their number with them, and the Yankee Group, a research and consulting firm, predicts that the number will rise to 50 million in the coming year.

There is no way, until the new rules take effect, to determine whether the complex systems built to allow the transfer of numbers from provider to provider will actually work, or how long a transfer, known in the industry as ''porting,'' will actually take.

Adding to the challenge, the Federal Communications Commission ruled on Monday that land-line numbers, too, would be fair game for transfer to a customer's wireless service. (For New Yorkers, that holds the prospect of perhaps the ultimate telephonic status symbol, a 212 cellphone number.)

When pressed, executives in the wireless industry acknowledge that the systems they have built in anticipation of the new rules could very well falter. Naysayer analysts have been more blunt about the potential for pandemonium.

''Mark my words: 30 percent of these attempted ports are going to fail,'' said Bob Egan, founder of Mobile Competency, a consulting firm, and author of a report titled ''Wireless Number Portability: This Ain't Y2K.'' ''This is a procedurally complex scenario. You're not just moving a phone number. You're moving from a network based on one technology and particular handset and billing system to another.''

Getting those networks to communicate with one another has kept companies essential to the equation extremely busy and required an enormous investment. Since 1996, when the Telecommunications Act mandated the transition to portability, the industry has spent $1.2 billion in preparation, according to the Cellular Telecommunications and Internet Association, the wireless trade group -- while, for the most part, fighting the mandate in court. Standards have been set, workers have been hired and trained, software has been designed, computer systems have been upgraded, and compatibility between those systems has been tested.

And freedom, for many, has already had its cost. Some carriers, with F.C.C. approval, have added monthly fees to customer bills to subsidize the cost.

For years now, the telecommunications industry has allowed customers another sort of choice, the ability to switch long-distance carriers on their home phones. That process is still not standardized from carrier to carrier, and in many cases is performed manually, industry executives say. (Wireless number transfers will require fewer pieces of information and are designed to work, under ideal circumstances, without human intervention.)

Those difficulties have not deterred consumers eager to find the best deal for phone service. ''Every second, every day, 365 days a year, someone changes their long-distance carrier,'' said Rich Nespola, chief executive of the Management Network Group, a consulting firm. ''That's still going on. Given choice, people exercise it. It's an amazing phenomenon.'' In the last five years, competing carriers and even cable companies have made choice possible in local phone service as well, although the process of changing can take days and is far from trouble-free.
''Mark my words: 30 percent of these attempted ports are going to fail,'' said Bob Egan, founder of Mobile Competency, a consulting firm, and author of a report titled ''Wireless Number Portability: This Ain't Y2K.'' ''This is a procedurally complex scenario. You're not just moving a phone number. You're moving from a network based on one technology and particular handset and billing system to another.''

Getting those networks to communicate with one another has kept companies essential to the equation extremely busy and required an enormous investment. Since 1996, when the Telecommunications Act mandated the transition to portability, the industry has spent $1.2 billion in preparation, according to the Cellular Telecommunications and Internet Association, the wireless trade group -- while, for the most part, fighting the mandate in court. Standards have been set, workers have been hired and trained, software has been designed, computer systems have been upgraded, and compatibility between those systems has been tested.

And freedom, for many, has already had its cost. Some carriers, with F.C.C. approval, have added monthly fees to customer bills to subsidize the cost.

For years now, the telecommunications industry has allowed customers another sort of choice, the ability to switch long-distance carriers on their home phones. That process is still not standardized from carrier to carrier, and in many cases is performed manually, industry executives say. (Wireless number transfers will require fewer pieces of information and are designed to work, under ideal circumstances, without human intervention.)

Those difficulties have not deterred consumers eager to find the best deal for phone service. ''Every second, every day, 365 days a year, someone changes their long-distance carrier,'' said Rich Nespola, chief executive of the Management Network Group, a consulting firm. ''That's still going on. Given choice, people exercise it. It's an amazing phenomenon.'' In the last five years, competing carriers and even cable companies have made choice possible in local phone service as well, although the process of changing can take days and is far from trouble-free.

tata neno picture









Sunday, March 8, 2009

Tata Motors Will Launch Nano With Micro-Hybrid Version In India


Tata Motors is currently working on launching the world’s cheapest, People’s car on a micro-hybrid version to increase the fuel efficiency to cut down its emission.
Tata Motors is currently discussing with Bosch, the world’s biggest component supplier, for sourcing the technology that is already being used by Mahindra & Mahindra in India and other automakers

Cheapest Car in the World:TATA NANO: only 2500$






Hello everyone, Although this is a off topic post on this blog, but i cant keep myself in control about not to posting this news. Today here in Auto EXPO Delhi (India) Tata motors launched worlds cheapest ever car named as "TATA NENO" When this project started 3 years back, everyone in world says "THIS IS IMPOSSIBLE TO DO". Now Tata motors have created a history by launching the car. Here are quick specifications: Engine: 625 CC (4 gear manual transmission) Five Doors Sitting capacity : 4 People Power: 30 BHP Speed: 90KMS (maximum) I am also able to get some the pics of the cars for everyone of you. here they are

Saturday, March 7, 2009

Standards


There are several standards documents covering the physical encoding of QR Code:[1]

* October 1997 — AIM International ISS QR Code
* January 1999 — JIS X 0510
* June 2000 — ISO/IEC 18004:2000 Information technology — Automatic identification and data capture techniques — Bar code symbology — QR Code (now withdrawn)
Defines QR Code Model 1 and QR Code Model 2 symbols.
* 1 September 2006 — ISO/IEC 18004:2006 Information technology — Automatic identification and data capture techniques — QR Code 2005 bar code symbology specification
Defines QR Code 2005 symbols, an extension of QR Code Model 2. Does not specify how to read QR Code Model 1 symbols, or require this for compliance.

At the application layer, there is some variation between implementations. NTT docomo has established de facto standards for the encoding of URLs, contact information, and several other data types.[2] Google's open-source "zxing" project maintains a list of QR Code data types.[3

Overview


Although initially used for tracking parts in vehicle manufacturing, QR Codes are now used in a much broader context, including both commercial tracking applications and convenience-oriented applications aimed at mobile phone users (known as mobile tagging). QR Codes storing addresses and URLs may appear in magazines, on signs, buses, business cards or just about any object that users might need information about. Users with a camera phone equipped with the correct reader software can scan the image of the QR Code causing the phone's browser to launch and redirect to the programmed URL. This act of linking from physical world objects is known as a hardlink or physical world hyperlinks. Users can also generate and print their own QR Code for others to scan and use by visiting one of several free QR Code generating sites.

QR Code


A QR Code is a matrix code (or two-dimensional bar code) created by Japanese corporation Denso-Wave in 1994. The "QR" is derived from "Quick Response", as the creator intended the code to allow its contents to be decoded at high speed. QR Codes are common in Japan, where they are currently the most popular type of two dimensional codes. Moreover, most current Japanese mobile phones can read this code with their camera.

Japan, EU to jointly develop eco-friendly technologies

TOKYO —
Japan has decided to work with the European Union to develop next-generation photovoltaic technologies as part of their efforts to combat climate change, industry ministry officials said Friday. Japan and the European Union will cooperate in developing photovoltaic cells that would be 40 percent more efficient in power generation but cost about one-sixth of the current average price of 46 yen per kilowatt hour, the officials said.

The other areas in which Japan and the European Union will launch joint development projects are related to rechargeable batteries, and carbon capture and storage technologies, they said. As to batteries for electric cars, they will aim for a running capacity of 500 kilometers per full charge and lower their market prices to one-40th of current levels.

Thursday, March 5, 2009

Science, engineering and technology

The distinction between science, engineering and technology is not always clear. Science is the reasoned investigation or study of phenomena, aimed at discovering enduring principles among elements of the phenomenal world by employing formal techniques such as the scientific method.[8] Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability and safety.

Engineering is the goal-oriented process of designing and making tools and systems to exploit natural phenomena for practical human means, often (but not always) using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result.

Technology is often a consequence of science and engineering — although technology as a human activity precedes the two fields. For example, science might study the flow of electrons in electrical conductors, by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines, such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists; the three fields are often considered as one for the purposes of research and reference.[9]

The exact relations between science and technology in particular have been debated by scientists, historians, and policymakers in the late 20th century, in part because the debate can inform the funding of basic and applied science. In immediate wake of World War II, for example, in the United States it was widely considered that technology was simply "applied science" and that to fund basic science was to reap technological results in due time. An articulation of this philosophy could be found explicitly in Vannevar Bush's treatise on postwar science policy, Science—The Endless Frontier: "New products, new industries, and more jobs require continuous additions to knowledge of the laws of nature... This essential new knowledge can be obtained only through basic scientific research." In the late-1960s, however, this view came under direct attack, leading towards initiatives to fund science for specific tasks (initiatives resisted by the scientific community). The issue remains contentious—though most analysts resist the model that technology simply is a result of scientific research.[10][11]

Technology


From Wikipedia, the free encyclopedia
Jump to: navigation, search
Semi-protected
"Advanced technology" redirects here. For the Advanced Technology form factor, see AT (form factor).
By the mid 20th century, humans had achieved a mastery of technology sufficient to leave the atmosphere of the Earth for the first time and explore space.

Technology is a broad concept that deals with an animal species' usage and knowledge of tools and crafts, and how it affects an animal species' ability to control and adapt to its environment. Technology is a term with origins in the Greek "technologia", "τεχνολογία" — "techne", "τέχνη" ("craft") and "logia", "λογία" ("saying").[1] However, a strict definition is elusive; "technology" can refer to material objects of use to humanity, such as machines, hardware or utensils, but can also encompass broader themes, including systems, methods of organization, and techniques. The term can either be applied generally or to specific areas: examples include "construction technology", "medical technology", or "state-of-the-art technology".

The human race's use of technology began with the conversion of natural resources into simple tools. The prehistorical discovery of the ability to control fire increased the available sources of food and the invention of the wheel helped humans in travelling in and controlling their environment. Recent technological developments, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact on a global scale. However, not all technology has been used for peaceful purposes; the development of weapons of ever-increasing destructive power has progressed throughout history, from clubs to nuclear weapons.

Technology has affected society and its surroundings in a number of ways. In many societies, technology has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products, known as pollution, and deplete natural resources, to the detriment of the Earth and its environment. Various implementations of technology influence the values of a society and new technology often raises new ethical questions. Examples include the rise of the notion of efficiency in terms of human productivity, a term originally applied only to machines, and the challenge of traditional norms.

Philosophical debates have arisen over the present and future use of technology in society, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar movements criticise the pervasiveness of technology in the modern world, claiming that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition. Indeed, until recently, it was believed that the development of technology was restricted only to human beings, but recent scientific studies indicate that other primates and certain dolphin communities have developed simple tools and learned to pass their knowledge to other generations.

Tuesday, March 3, 2009

WiMAX


WiMAX
From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article may require copy-editing for grammar, style, cohesion, tone or spelling. You can assist by editing it now. A how-to guide is available. (August 2008)
The Internet Protocol Suite
Application Layer
BGP · DHCP · DNS · FTP · GTP · HTTP · IMAP · IRC · Megaco · MGCP · NNTP · NTP · POP · RIP · RPC · RTP · RTSP · SDP · SIP · SMTP · SNMP · SOAP · SSH · STUN · Telnet · TLS/SSL · XMPP · (more)
Transport Layer
TCP · UDP · DCCP · SCTP · RSVP · ECN · (more)
Internet Layer
IP (IPv4, IPv6) · ICMP · ICMPv6 · IGMP · IPsec · (more)
Link Layer
ARP · RARP · NDP · OSPF · Tunnels (L2TP) · Media Access Control (Ethernet, MPLS, DSL, ISDN, FDDI) · Device Drivers · (more)
This box: view • talk • edit
A WiMAX CPE of a 26 km connection mounted 13 meters above the ground (2004, Lithuania).
WiMAX equipment

WiMAX, meaning Worldwide Inter-operability for Microwave Access, is a telecommunications technology that provides wireless transmission of data using a variety of transmission modes, from point-to-multipoint links to portable and fully mobile internet access. The technology provides up to 72 Mbit/s symmetric broadband speed without the need for cables. The technology is based on the IEEE 802.16 standard (also called Broadband Wireless Access). The name "WiMAX" was created by the WiMAX Forum, which was formed in June 2001 to promote conformity and interoperability of the standard. The forum describes WiMAX as "a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL".[1]
Contents
[hide]

* 1 Definitions
* 2 Uses
o 2.1 Broadband access
+ 2.1.1 Subscriber units (Client Units)
o 2.2 Mobile handset applications
o 2.3 Backhaul/access network applications
* 3 Technical information
o 3.1 MAC layer/data link layer
o 3.2 Physical layer
o 3.3 Architecture
o 3.4 Comparison with Wi-Fi
o 3.5 Spectrum allocation issues
o 3.6 Spectral efficiency
o 3.7 Limitations
o 3.8 Silicon implementations
* 4 Standards
* 5 Conformance testing
* 6 Associations
o 6.1 WiMAX Forum
o 6.2 WiMAX Spectrum Owners Alliance
* 7 Competing technologies
o 7.1 Mobile Broadband Wireless Access
o 7.2 Internet-oriented systems
o 7.3 Comparison
* 8 Future development
* 9 Interference
* 10 Current deployments
o 10.1 Networks
* 11 By territory
o 11.1 Europe
+ 11.1.1 Germany
o 11.2 America
o 11.3 Africa
o 11.4 Asia
+ 11.4.1 Indonesia
* 12 Literature
* 13 See also
* 14 Notes and references
* 15 External links

[edit] Definitions

The terms "fixed WiMAX", "mobile WiMAX", "802.16d" and "802.16e" are frequently used incorrectly.[2] Correct definitions are the following:

* 802.16-2004 is often called 802.16d, since that was the working party that developed the standard. It is also frequently referred to as "fixed WiMAX" since it has no support for mobility.
* 802.16e-2005 is an amendment to 802.16-2004 and is often referred to in shortened form as 802.16e. It introduced support for mobility, amongst other things and is therefore also known as "mobile WiMAX".

[edit] Uses

The bandwidth and range of WiMAX make it suitable for the following potential applications:

* Connecting Wi-Fi hot spots to the Internet.
* Providing a wireless alternative to cable and DSL for "last mile" broadband access.
* Providing data and telecommunications services.
* Providing a source of Internet connectivity as part of a business continuity plan. That is, if a business has a fixed and a wireless Internet connection, especially from unrelated providers, they are unlikely to be affected by the same service outage.
* Providing portable connectivity.

[edit] Broadband access

Companies are closely examining Wi-MAX for last mile connectivity. The resulting competition may bring lower pricing for both home and business customers or bring broadband access to places where it has been economically unavailable.

WiMAX access was used to assist with communications in Aceh, Indonesia, after the tsunami in December 2004. All communication infrastructure in the area, other than amateur radio, was destroyed, making the survivors unable to communicate with people outside the disaster area and vice versa. WiMAX provided broadband access that helped regenerate communication to and from Aceh.

In addition, WiMAX was used by Intel Corporation to assist the FCC and FEMA in their communications efforts in the areas affected by Hurricane Katrina.[3]

[edit] Subscriber units (Client Units)

WiMAX subscriber units are available in both indoor and outdoor versions from several manufacturers. Self-install indoor units are convenient, but radio losses mean that the subscriber must be significantly closer to the WiMAX base station than with professionally-installed external units. As such, indoor-installed units require a much higher infrastructure investment as well as operational cost (site lease, backhaul, maintenance) due to the high number of base stations required to cover a given area. Indoor units are comparable in size to a cable modem or DSL modem. Outdoor units are roughly the size of a laptop PC, and their installation is comparable to a the installation of a residential satellite dish.

With the potential of mobile WiMAX, there is an increasing focus on portable units. This includes handsets (similar to cellular smartphones), PC peripherals (PC Cards or USB dongles), and embedded devices in laptops, such as are now available for WiFi. In addition, there is much emphasis from operators on consumer electronics devices (game terminals, MP3 players and the like); it is notable this is more similar to Wi-Fi than to 3G cellular technologies.

Current certified devices can be found at the WiMAX Forum web site. This is not a complete list of devices available as certified modules are embedded into laptops, MIDs (Mobile Internet Devices), and private labeled devices.

[edit] Mobile handset applications
This article does not cite any references or sources. Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. (July 2008)

Sprint Nextel announced in mid-2006 that it would invest about US$ 5 billion in a WiMAX technology buildout over the next few years.[4] Since that time Sprint has been dealt setbacks that have resulted in steep quarterly losses. On May 7, 2008, Sprint, Clearwire, Google, Intel, Comcast, and Time Warner announced a pooling of 2.5 GHz spectrum and formation of a new company which will take the name Clearwire. The new company hopes to benefit from combined services offerings and network resources as a springboard past its competitors. The cable companies will provide media services to other partners while gaining access to the wireless network as a Mobile virtual network operator. Google will contribute Android handset device development and applications and will receive revenue share for advertising and other services they provide. Clearwire Sprint and current Clearwire gain a majority stock ownership in the new venture and ability to access between the new Clearwire and Sprint 3G networks. Some details remain unclear including how soon and in what form announced multi-mode WiMAX and 3G EV-DO devices will be available. This raises questions that arise for availability of competitive chips that require licensing of Qualcomm's IPR.

Some analysts have questioned how the deal will work out: Although fixed-mobile convergence has been a recognized factor in the industry, prior attempts to form partnerships among wireless and cable companies have generally failed to lead to significant benefits to the participants. Other analysts point out that as wireless progresses to higher bandwidth, it inevitably competes more directly with cable and DSL, thrusting competitors into bed together. Also, as wireless broadband networks grow denser and usage habits shift, the need for increased back haul and media service will accelerate, therefore the opportunity to leverage cable assets is expected to increase.

[edit] Backhaul/access network applications

WiMAX is a possible replacement candidate for cellular phone technologies such as GSM and CDMA, or can be used as a layover to increase capacity. It has also been considered as a wireless backhaul technology for 2G, 3G, and 4G networks in both developed and poor nations.[5][6]

In North America, "Backhaul" for urban cellular operations is typically provided via one or more copper wireline T1 connections, whereas remote cellular operations are sometimes backhauled via satellite. In most other regions, urban and rural backhaul is usually provided by microwave links. (The exception to this is where the network is operated by an incumbent with ready access to the copper network, in which case E1 lines may be used). WiMAX is a broadband platform and as such has much more substantial backhaul bandwidth requirements than legacy cellular applications. Therefore traditional copper wireline backhaul solutions are not appropriate. Consequently the use of wireless microwave backhaul is on the rise in North America and existing microwave backhaul links in all regions are being upgraded. [7] Capacities of between 34Mbit/s and 1 Gbit/s are routinely being deployed with latencies in the order of 1ms. In many cases, operators are aggregating sites using wireless technology and then presenting traffic on to fibre networks where convenient.

Deploying WiMAX in rural areas with limited or no internet backbone will be challenging as additional methods and hardware will be required to procure sufficient bandwidth from the nearest sources — the difficulty being in proportion to the distance between the end-user and the nearest sufficient internet backbone.

[edit] Technical information
For more details on this topic, see OSI 7-layer model.

WiMAX is a term coined to describe standard, interoperable implementations of IEEE 802.16 wireless networks, similar to the way the term Wi-Fi is used for interoperable implementations of the IEEE 802.11 Wireless LAN standard. However, WiMAX is very different from Wi-Fi in the way it works.

[edit] MAC layer/data link layer

In Wi-Fi the media access controller (MAC) uses contention access — all subscriber stations that wish to pass data through a wireless access point (AP) are competing for the AP's attention on a random interrupt basis. This can cause subscriber stations distant from the AP to be repeatedly interrupted by closer stations, greatly reducing their throughput. This makes services such as Voice over Internet Protocol (VoIP) or IPTV, which depend on an essentially-constant Quality of service (QoS) depending on data rate and interruptibility, difficult to maintain for more than a few simultaneous users.

In contrast, the 802.16 MAC uses a scheduling algorithm for which the subscriber station needs to compete only once (for initial entry into the network). After that it is allocated an access slot by the base station. The time slot can enlarge and contract, but remains assigned to the subscriber station, which means that other subscribers cannot use it. In addition to being stable under overload and over-subscription (unlike 802.11), the 802.16 scheduling algorithm can also be more bandwidth efficient. The scheduling algorithm also allows the base station to control QoS parameters by balancing the time-slot assignments among the application needs of the subscriber stations.

[edit] Physical layer

The original version of the standard on which WiMAX is based (IEEE 802.16) specified a physical layer operating in the 10 to 66 GHz range. 802.16a, updated in 2004 to 802.16-2004, added specifications for the 2 to 11 GHz range. 802.16-2004 was updated by 802.16e-2005 in 2005 and uses scalable orthogonal frequency-division multiple access (SOFDMA) as opposed to the orthogonal frequency-division multiplexing version with 256 sub-carriers (of which 200 are used) in 802.16d. More advanced versions, including 802.16e, also bring Multiple Antenna Support through MIMO. See: WiMAX MIMO. This brings potential benefits in terms of coverage, self installation, power consumption, frequency re-use and bandwidth efficiency. 802.16e also adds a capability for full mobility support. The WiMAX certification allows vendors with 802.16d products to sell their equipment as WiMAX certified, thus ensuring a level of interoperability with other certified products, as long as they fit the same profile.

Most commercial interest is in the 802.16d and .16e standards, since the lower frequencies used in these variants suffer less from inherent signal attenuation and therefore give improved range and in-building penetration. Already today, a number of networks throughout the world are in commercial operation using certified WiMAX equipment compliant with the 802.16d standard.

[edit] Architecture
The WiMAX Forum WiMAX Architecture

The WiMAX Forum has defined an architecture that defines how a WiMAX network connects with other networks, and a variety of other aspects of operating such a network, including address allocation, authentication, etc. An overview of the architecture is given in the illustration.

This defines the following components, plus a number of interconnections (or reference points) between these, labeled R1 to R5 and R8:

* SS/MS: the Subscriber Station/Mobile Station
* ASN: the Access Service Network[8]
* BS: Base station, part of the ASN
* ASN-GW: the ASN Gateway, part of the ASN
* CSN: the Connectivity Service Network
* HA: Home Agent, part of the CSN
* AAA: AAA Server, part of the CSN
* NAP: a Network Access Provider
* NSP: a Network Service Provider

It is important to note that the functional architecture can be designed into various hardware configurations rather than fixed configurations. For example, the architecture is flexible enough to allow remote/mobile stations of varying scale and functionality and Base Stations of varying size - e.g. femto, pico, and mini BS as well as macros.

[edit] Comparison with Wi-Fi

Comparisons and confusion between WiMAX and Wi-Fi are frequent, possibly because both begin with the same two letters, are based upon IEEE standards beginning with "802.", and are related to wireless connectivity and Internet access. However, the two standards are aimed at different applications.

* WiMAX uses licensed and unlicensed spectrum to deliver a point-to-point connection to the Internet from an ISP to an end user. Different 802.16 standards provide different types of access, from portable (similar to a cordless phone) to fixed (an alternative to wired access, where the end user's wireless termination point is fixed in location.) WiMax is developed primarily for wireless metropolitan area networks (WMANs), with a transmission range of a few kilometers.
* Wi-Fi uses unlicensed spectrum to provide access to a network. Wi-Fi has primarily been developed for wireless local area networks (WLANs), with a transmission range of up to 100m. Wi-Fi therefore is often used for last-mile delivery, such as hotspots.
* WiMAX and Wi-Fi have quite different Quality of Service (QoS) mechanisms. WiMAX uses a mechanism based on connections between the Base Station and the user device. Each connection is based on specific scheduling algorithms. Wi-Fi has introduced a QoS mechanism similar to fixed Ethernet, where packets can receive different priorities based on their tags. For example VoIP traffic may be given priority over web browsing.
* Wi-Fi runs on the MAC's CSMA/CA protocol, which is connectionless and contention based, whereas WiMAX runs a connection-oriented MAC.

Both 802.11 and 802.16 define P2P and ad hoc networks, where an end user communicates to users or servers on another LAN using its access point or base station.

[edit] Spectrum allocation issues

The 802.16 specification applies across a wide swath of the RF spectrum, and WiMAX could function on any frequency below 66 GHz,[9] (higher frequencies would decrease the range of a Base Station to a few hundred meters in an urban environment).

There is no uniform global licensed spectrum for WiMAX, although the WiMAX Forum has published three licensed spectrum profiles: 2.3 GHz, 2.5 GHz and 3.5 GHz, in an effort to decrease cost: economies of scale dictate that the more WiMAX embedded devices (such as mobile phones and WiMAX-embedded laptops) are produced, the lower the unit cost. (The two highest cost components of producing a mobile phone are the silicon and the extra radio needed for each band.) Similar economy of scale benefits apply to the production of Base Stations.

In the unlicensed band, 5.x GHz is the approved profile. Telecom companies are unlikely to use this spectrum widely other than for backhaul, since they do not own and control the spectrum.

In the USA, the biggest segment available is around 2.5 GHz,[10] and is already assigned, primarily to Sprint Nextel and Clearwire. Elsewhere in the world, the most-likely bands used will be the Forum approved ones, with 2.3 GHz probably being most important in Asia. Some countries in Asia like India and Indonesia will use a mix of 2.5 GHz, 3.3 GHz and other frequencies. Pakistan's Wateen Telecom uses 3.5 GHz.

Analog TV bands (700 MHz) may become available for WiMAX usage, but await the complete roll out of digital TV, and there will be other uses suggested for that spectrum. In the USA the FCC auction for this spectrum began in January 2008 and, as a result, the biggest share of the spectrum went to Verizon Wireless and the next biggest to AT&T.[11] Both of these companies have stated their intention of supporting LTE, a technology which competes directly with WiMAX. EU commissioner Viviane Reding has suggested re-allocation of 500–800 MHz spectrum for wireless communication, including WiMAX.[12]

WiMAX profiles define channel size, TDD/FDD and other necessary attributes in order to have inter-operating products. The current fixed profiles are defined for both TDD and FDD profiles. At this point, all of the mobile profiles are TDD only. The fixed profiles have channel sizes of 3.5 MHz, 5 MHz, 7 MHz and 10 MHz. The mobile profiles are 5 MHz, 8.75 MHz and 10 MHz. (Note: the 802.16 standard allows a far wider variety of channels, but only the above subsets are supported as WiMAX profiles.)

Since October 2007, the Radio communication Sector of the International Telecommunication Union (ITU-R) has decided to include WiMAX technology in the IMT-2000 set of standards.[13] This enables spectrum owners (specifically in the 2.5-2.69 GHz band at this stage) to use Mobile WiMAX equipment in any country that recognizes the IMT-2000.

[edit] Spectral efficiency

One of the significant advantages of advanced wireless systems such as WiMAX is spectral efficiency. For example, 802.16-2004 (fixed) has a spectral efficiency of 3.7 (bit/s)/Hertz, and other 3.5–4G wireless systems offer spectral efficiencies that are similar to within a few tenths of a percent. The notable advantage of WiMAX comes from combining SOFDMA with smart antenna technologies. This multiplies the effective spectral efficiency through multiple reuse and smart network deployment topologies. The direct use of frequency domain organization simplifies designs using MIMO-AAS compared to CDMA/WCDMA methods, resulting in more effective systems.[citation needed]

[edit] Limitations

A commonly-held misconception is that WiMAX will deliver 70 Mbit/s over 31 miles/50 kilometers. In reality, WiMAX can only do one or the other — operating over maximum range (31 miles/50 km) increases bit error rate and thus must use a lower bitrate. Lowering the range allows a device to operate at higher bitrates.

Typically, fixed WiMAX networks have a higher-gain directional antenna installed near the client (customer) which results in greatly increased range and throughput. Mobile WiMAX networks are usually made of indoor "customer premises equipment" (CPE) such as desktop modems, laptops with integrated Mobile WiMAX or other Mobile WiMAX devices. Mobile WiMAX devices typically have an omni-directional antenna which is of lower-gain compared to directional antennas but are more portable. In practice, this means that in a line-of-sight environment with a portable Mobile WiMAX CPE, speeds of 10 Mbit/s at 6 miles/10 km could be delivered. However, in urban environments they may not have line-of-sight and therefore users may only receive 10 Mbit/s over 2 km. In current deployments, throughputs are often closer to 2 Mbit/s symmetric at 10 km with fixed WiMAX and a high gain antenna. It is also important to consider that a throughput of 2 Mbit/s can mean 2 Mbit/s, symmetric simultaneously, 1 Mbit/s symmetric or some asymmetric mix (e.g. 0.5 Mbit/s downlink and 1.5 Mbit/s uplink or 1.5 Mbit/s downlink and 0.5 Mbit/s uplink), each of which required slightly different network equipment and configurations. Higher-gain directional antennas can be used with a Mobile WiMAX network with range and throughput benefits but the obvious loss of practical mobility.

Like most wireless systems, available bandwidth is shared between users in a given radio sector, so performance could deteriorate in the case of many active users in a single sector. In practice, many users will have a range of 2-, 4-, 6-, 8-, 10- or 12 Mbit/s services and additional radio cards will be added to the base station to increase the capacity as required.

Because of this, various granular and distributed network architectures are being incorporated into WiMAX through independent development and within the IEEE 802.16j mobile multi-hop relay (MMR) task group. This includes wireless mesh, grids, network remote station repeaters which can extend networks and connect to backhaul.

[edit] Silicon implementations

A critical requirement for the success of a new technology is the availability of low-cost chipsets and silicon implementations.

Intel Corporation is a leader in promoting WiMAX, and has developed its own chipset. However, it is notable that most of the major semiconductor companies have to date been more cautious of involvement and most of the products come from specialist smaller or start-up suppliers. For the client-side these include Sequans, whose chips are in more than half of the WiMAX Forum Certified(tm) MIMO-based Mobile WiMAX client devices, GCT Semiconductor, ApaceWave, Altair Semiconductor, Beceem, Comsys, Runcom, Motorola with TI, NextWave Wireless, Redpine Signals, Wavesat, Coresonic and SySDSoft. Both Sequans and Wavesat manufacture products for both clients and network while Texas Instruments, DesignArt, and picoChip are focused on WiMAX chip sets for base stations. Kaben Wireless Silicon is a provider of RF front-end and semiconductor IP for WiMAX applications. The large number of suppliers during introduction phase of WiMAX demonstrates the low entry barriers for IPR.

[edit] Standards

The current WiMAX incarnation, Mobile WiMAX, is based upon IEEE Std 802.16e-2005,[14] approved in December 2005. It is a supplement to the IEEE Std 802.16-2004,[15] and so the actual standard is 802.16-2004 as amended by 802.16e-2005 — the specifications need to be read together to understand them.

IEEE Std 802.16-2004 addresses only fixed systems. It replaced IEEE Standards 802.16-2001, 802.16c-2002, and 802.16a-2003.

IEEE 802.16e-2005 improves upon IEEE 802.16-2004 by:

* Adding support for mobility (soft and hard handover between base stations). This is seen as one of the most important aspects of 802.16e-2005, and is the very basis of 'Mobile WiMAX'.
* Scaling of the Fast Fourier transform (FFT) to the channel bandwidth in order to keep the carrier spacing constant across different channel bandwidths (typically 1.25 MHz, 5 MHz, 10 MHz or 20 MHz). Constant carrier spacing results in a higher spectrum efficiency in wide channels, and a cost reduction in narrow channels. Also known as Scalable OFDMA (SOFDMA). Other bands not multiples of 1.25 MHz are defined in the standard, but because the allowed FFT subcarrier numbers are only 128, 512, 1024 and 2048, other frequency bands will not have exactly the same carrier spacing, which might not be optimal for implementations.
* Improving non-line-of-sight propagation coverage by utilizing advanced antenna diversity schemes, and hybrid automatic repeat-request (HARQ)
* Improving capacity and coverage by introducing Adaptive Antenna Systems (AAS) and MIMO technology
* Increasing system gain by use of denser sub-channelization, thereby improving indoor penetration
* Introducing high-performance coding techniques such as Turbo Coding and Low-Density Parity Check (LDPC), enhancing security and NLOS performance
* Introducing downlink sub-channelization, allowing administrators to trade coverage for capacity or vice versa
* Enhanced Fast Fourier transform algorithm can tolerate larger delay spreads, increasing resistance to multipath interference
* Adding an extra QoS class (enhanced real-time Polling Service) more appropriate for VoIP applications.

802.16d vendors point out that fixed WiMAX offers the benefit of available commercial products and implementations optimized for fixed access. It is a popular standard among alternative service providers and operators in developing areas due to its low cost of deployment and advanced performance in a fixed environment. Fixed WiMAX is also seen as a potential standard for backhaul of wireless base stations such as cellular, Wi-Fi or even Mobile WiMAX.

SOFDMA (used in 802.16e-2005) and OFDM256 (802.16d) are not compatible thus most equipment will have to be replaced if an operator wants or needs to move to the later standard. However, some manufacturers are planning to provide a migration path for older equipment to SOFDMA compatibility which would ease the transition for those networks which have already made the OFDM256 investment. Intel provides a dual-mode 802.16-2004 802.16-2005 chipset for subscriber units. This affects a relatively small number users and operators.

[edit] Conformance testing

TTCN-3 test specification language is used for the purposes of specifying conformance tests for WiMAX implementations. The WiMAX test suite is being developed by a Specialist Task Force at ETSI (STF 252).[16]

[edit] Associations

[edit] WiMAX Forum

The WiMAX Forum is a non profit organization formed to promote the adoption of WiMAX compatible products and services.[17]

A major role for the organization is to certify the interoperability of WiMAX products.[18] Those that pass conformance and interoperability testing achieve the "WiMAX Forum Certified" designation, and can display this mark on their products and marketing materials. Some vendors claim that their equipment is "WiMAX-ready", "WiMAX-compliant", or "pre-WiMAX", if they are not officially WiMAX Forum Certified.

Another role of the WiMAX Forum is to promote the spread of knowledge about WiMAX. In order to do so, it has a certified training program that is currently offered in English and French. It also offers a series of member events and endorses some industry events.

[edit] WiMAX Spectrum Owners Alliance
WiSOA logo

WiSOA was the first global organization composed exclusively of owners of WiMAX spectrum with plans to deploy WiMAX technology in those bands. WiSOA focussed on the regulation, commercialisation, and deployment of WiMAX spectrum in the 2.3–2.5 GHz and the 3.4–3.5 GHz ranges. WiSOA merged with the Wireless Broadband Alliance in April 2008.[19]

[edit] Competing technologies
Speed vs. Mobility of wireless systems: Wi-Fi, HSPA, UMTS, GSM

Within the marketplace, WiMAX's main competition comes from existing, widely deployed wireless systems such as UMTS and CDMA2000, as well as a number of Internet-oriented systems such as HiperMAN.

3G cellular phone systems usually benefit from already having entrenched infrastructure, having been upgraded from earlier systems. Users can usually fall back to older systems when they move out of range of upgraded equipment, often relatively seamlessly.

The major cellular standards are being evolved to so-called 4G, high-bandwidth, low-latency, all-IP networks with voice services built on top. With GSM/UMTS, the move to 4G is the 3GPP Long Term Evolution effort. For AMPS/TIA derived standards such as CDMA2000, a replacement called Ultra Mobile Broadband is under development. In both cases, existing air interfaces are being discarded, in favour of OFDMA for the downlink and a variety of OFDM based techniques for the uplink, much akin to WiMAX.

In some areas of the world, the wide availability of UMTS and a general desire for standardization has meant spectrum has not been allocated for WiMAX: in July 2005, the EU-wide frequency allocation for WiMAX was blocked.

[edit] Mobile Broadband Wireless Access

Mobile Broadband Wireless Access (MBWA) is a technology being developed by IEEE 802.20 and is aimed at wireless mobile broadband for operations from 75 to 220 mph (120 to 350 km/h). The 802.20 standard committee was first to define many of the methods which were later funneled into Mobile WiMAX, including high speed dynamic modulation and similar scalable OFDMA capabilities. It apparently retains fast hand-off, Forward Error Correction (FEC) and cell edge enhancements.

The Working Group was temporarily suspended in mid-2006 by the IEEE-SA Standards Board because it had been the subject of a number of appeals. A preliminary investigation of one of these "revealed a lack of transparency, possible 'dominance,' and other irregularities in the Working Group".[20]

In September 2006, the IEEE-SA Standards Board approved a plan to enable the working group to continue under new conditions, and the standard is now expected to be completed by Q2 2008.

Qualcomm, a leading company behind 802.20, has dropped support for continued development in order to focus on LTE.[21]

[edit] Internet-oriented systems

Early WirelessMAN standards, the European standard HiperMAN and Korean standard WiBro have been harmonized as part of WiMAX and are no longer seen as competition but as complementary. All networks now being deployed in South Korea, the home of the WiBro standard, are now WiMAX.

As a short-range mobile Internet technology, such as in cafes and at transportation hubs like airports, the popular Wi-Fi 802.11b/g system is widely deployed, and provides enough coverage for some users to feel subscription to a WiMAX service is unnecessary.

[edit] Comparison
Main article: Comparison of wireless data standards
Editors are currently in dispute concerning points of view expressed in this date. Please help to discuss and resolve the dispute before removing this message. (January 2009)

The following table should be treated with caution because it only shows peak rates which are potentially very misleading. In addition, the comparisons listed are not normalized by physical channel size (i.e., spectrum used to achieve the listed peak rates); this obfuscates spectral efficiency and net through-put capabilities of the different wireless technologies listed below.
v • d • e
Comparison of Mobile Internet Access methods Standard ↓ Family ↓ Primary Use ↓ Radio Tech ↓ Downlink (Mbit/s) ↓ Uplink (Mbit/s) ↓ Notes ↓
LTE UMTS/4GSM General 4G OFDMA/MIMO/SC-FDMA 326.4 86.4 LTE-Advanced update to offer over 1 Gbit/s speeds.
802.16e WiMAX Mobile Internet MIMO-SOFDMA 70 70 WiMAX-m update to offer over 1 Gbit/s speeds, (comparable to LTE advanced).
Flash-OFDM Flash-OFDM Mobile Internet
mobility up to 200mph (350km/h) Flash-OFDM 5.3
10.6
15.9 1.8
3.6
5.4 Mobile range 18miles (30km)
extended range 34 miles (55km)
HIPERMAN HIPERMAN Mobile Internet OFDM 56.9 56.9
WiBro WiBro Mobile Internet OFDMA 50 50 Mobile range (900 m)
iBurst iBurst 802.20 Mobile Internet HC-SDMA/TDD/MIMO 64 64 3–12 km
EDGE Evolution GSM Mobile Internet TDMA/FDD 1.9 0.9 3GPP Release 7
UMTS W-CDMA
HSDPA+HSUPA
HSPA+ UMTS/3GSM General 3G CDMA/FDD

CDMA/FDD/MIMO 0.384
14.4
42 0.384
5.76
11.5 HSDPA widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 42 Mbit/s.
UMTS-TDD UMTS/3GSM Mobile Internet CDMA/TDD 16 16 Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA
1xRTT CDMA2000 Mobile phone CDMA 0.144 0.144 Succeeded by EV-DO
EV-DO 1x Rev. 0
EV-DO 1x Rev.A
EV-DO Rev.B CDMA2000 Mobile Internet CDMA/FDD 2.45
3.1
4.9xN 0.15
1.8
1.8xN Rev B note: N is the number of 1.25 MHz chunks of spectrum used. Not yet deployed.

Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennae, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available. For more information, see Comparison of wireless data standards.

LTE is expected to be ratified at the end of 2008, with commercial implementations becoming viable within the next two years.

[edit] Future development

Mobile WiMAX based upon 802.16e-2005 has been accepted as IP-OFDMA for inclusion as the sixth wireless link system under IMT-2000. This can hasten acceptance by regulatory authorities and operators for use in cellular spectrum. WiMAX II, 802.16m will be proposed for IMT-Advanced 4G.

The goal for the long term evolution of both WiMAX and LTE is to achieve 100 Mbit/s mobile and 1 Gbit/s fixed-nomadic bandwidth as set by ITU for 4G NGMN (Next Generation Mobile Network) systems through the adaptive use of MIMO-AAS and smart, granular network topologies. 3GPP LTE and WiMAX-m are concentrating much effort on MIMO-AAS, mobile multi-hop relay networking and related developments needed to deliver 10X and higher Co-Channel reuse multiples.

Since the evolution of core air-link technologies has approached the practical limits imposed by Shannon's Theorem, the evolution of wireless has embarked on pursuit of the 3X to 10X+ greater bandwidth and network efficiency by advances in the spatial and smart wireless broadband networking technologies.

[edit] Interference

A field test conducted by SUIRG (Satellite Users Interference Reduction Group) with support from the U.S. Navy, the Global VSAT Forum, and several member organizations yielded results showing interference at 12 km when using the same channels for both the WiMAX systems and satellites in C-band.[22] The WiMAX Forum has not answered yet.

[edit] Current deployments

[edit] Networks
Main article: List of deployed WiMAX networks

The WiMAX Forum now claims there are over 400 WiMAX networks deployed in over 130 countries.

[edit] By territory

This section gives details of regulatory decisions in various parts of the world. For information on deployments around the world see the List of deployed WiMAX networks

[edit] Europe

Commission Decision of 2008-05-21 on the harmonisation of the 3400-3800 MHz frequency band for terrestrial systems capable of providing electronic communications services in the Community.[23]

It includes:

* Pursuant to Article 4(2) of Decision 676/2002/EC (of the European Parliament and of the Council of 7 March 2002 on a regulatory framework for radio spectrum policy in the European Community - Radio Spectrum Decision -),[24] the Commission gave a mandate dated 4 January 2006 to the European Conference of Postal and Telecommunications Administrations (hereinafter the “CEPT”) to identify the conditions relating to the provision of harmonised radio frequency bands in the EU for Broadband Wireless Access (BWA) applications.
* In response to that Mandate, the CEPT issued a report (CEPT Report 15) on BWA, which concludes that the deployment of fixed, nomadic and mobile networks is technically feasible within the 3400-3800 MHz frequency band under the technical conditions described in the European Conference of Postal and Telecommunications Administrations Decision ECC/DEC/(07)02 and Recommendation ECC/REC/(04)05.
* No later than six months after entry into force of this Decision, Member States shall designate and make available, on a non-exclusive basis, the 3400-3600 MHz band for terrestrial electronic communications networks.
* By 1 January 2012 Member States shall designate and subsequently make available, on a non-exclusive basis, the 3600-3800 MHz band for terrestrial electronic communications networks.
* The designation of the 3400-3800 MHz band for fixed, nomadic and mobile applications is an important element addressing the convergence of the mobile, fixed and broadcasting sectors and reflecting technical innovation. Member States shall allow the use of the 3400-3800 MHz band in for fixed, nomadic and mobile electronic communications networks.
* This Decision is addressed to the Member States.

[edit] Germany

German Federal Network Agency has begun assigning frequencies for wireless Internet access in the band 3400 to 3600 MHz (in some places up to 4000 MHz).[25]

[edit] America

[edit] Africa

In South Afican Telecoms Regulator ICASA has only issued four licences for commercial WiMAX services: to wireless broadband solutions provider iBurst, state-owned signal distributor Sentech, second network operator Neotel, [Amatole Telecommunication Services] (under serviced area license holder in S.A. and Telkom, all on the 3.5 GHz band.

[edit] Asia

[edit] Indonesia

* The Indonesian government announced on January 22, 2009 two ministry decrees and three regulations releasing spectrum at 2.3GHz and 3.3GHz for wireless broadband access across all regions of Indonesia. This means Indonesia will using 2.3-GHz band for the Wimax 16.e standard while 3.3-GHz will be used for the 16.d standard.[26]

[edit] Literature

* K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems: From OFDM and MC-CDMA to LTE and WiMAX, 2nd Edition, John Wiley & Sons, 2008, ISBN 978-0-470-99821-2

[edit] See also
Sister project Wikimedia Commons has media related to: WiMAX
Sister project Wikibooks has a book on the topic of
Nets, Webs and the Information Infrastructure

* High-Speed Downlink Packet Access
* Evolved HSPA
* Wireless broadband
* Customer-premises equipment
* List of deployed WiMAX networks
* Mobile broadband
* Mobile VoIP
* Municipal broadband
* Switched mesh
* WiBro
* Wireless local loop

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More